Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering
 Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 4.1 Path Integrals

Problem 1. Compute the following path integrals:
i) $f(x, y)=2 x y^{2}$ along the circle of radius R in the first quadrant.
ii) $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{2}$ along the helix $\mathbf{r}(t)=(\cos t, \sin t, 3 t)$, from the point $(1,0,0)$ to the point $(1,0,6 \pi)$.
Solution: $i) 2 R^{4} / 3$; ii) $2 \pi \sqrt{10}\left(5+120 \pi^{2}+1296 \pi^{4}\right) / 5$.

Problem 2. Compute the path integrals of the vector field \mathbf{F} along the given paths:
i) $\mathbf{F}(x, y)=\left(x^{2}-2 x y, y^{2}-2 x y\right)$, along the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$,
ii) $\mathbf{F}(x, y)=\left(x^{2}+y^{2}, x^{2}-y^{2}\right)$, along the curve $y=1-|1-x|$, from $(0,0)$ to $(2,0)$,
iii) $\mathbf{F}(x, y, z)=\left(y^{2}-z^{2}, 2 y z,-x^{2}\right)$, along the path given by $r(t)=\left(t, t^{2}, t^{3}\right)$, for $t \in[0,1]$,
iv) $\mathbf{F}(x, y, z)=\left(2 x y, x^{2}+z, y\right)$, along the line that connects $(1,0,2)$ with $(3,4,1)$.

Solution: i) $-14 / 15$; ii) $4 / 3$; iii) $1 / 35$; iv) 40.

Problem 3. Consider the vector function $\mathbf{F}(x, y)=\left(x^{2}, y\right)$. Compute the path integral of \mathbf{F} along the following paths that start at $(1,0)$ and end at $(-1,0)$:
i) The line segment connecting both points.
ii) The two possible paths of the rectangle $[-1,1] \times[-1,1]$.
iii) The upper semi-circle that connects both points.

Solution: $-2 / 3$ in all cases.

Problem 4. Compute:
i) $\int_{g}(x-y) d x+(x+y) d y$, where g is the line connecting $(1,0)$ with $(0,2)$.
ii) $\int_{C} x^{3} d y-y^{3} d x$, where C is the unit circle.
iii) $\int_{\Gamma} \frac{d x+d y}{|x|+|y|}$, where Γ is the square of vertices $(1,0),(0,1),(-1,0)$ and $(0,-1)$, walked on once in a counterclockwise direction.
iv) $\int_{\rho}(x+2 y) d x+(3 x-y) d y$ where ρ is the ellipse defined by $x^{2}+4 y^{2}=4$, walked on once in a counterclockwise direction.
v) $\int_{R} \frac{y^{3} d x-x y^{2} d y}{x^{5}}$, where R is the curve $x=\sqrt{1-t^{2}}, y=t \sqrt{1-t^{2}},-1 \leq t \leq 1$.

Solution: i) $7 / 2$; ii) $3 \pi / 2$; iii) 0 ; iv) 2π; $v)-\pi / 2$.

Problem 5. Compute:
i) $\int_{\gamma} y d x-x d y+z d z$, where γ is the curve resulting from the intersection of the cylinder $x^{2}+y^{2}=a^{2}$ and the plane $z-y=a$ and oriented counterclockwise.
ii) $\int_{\gamma} \mathbf{F}$, where $\mathbf{F}(x, y, z)=\left(2 x y+z^{2}, x^{2}, 2 x z\right)$ and γ is the curve resulting from the intersection of the plane $x=y$ and the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, oriented positively.
iii) $\int_{\gamma} \mathbf{F}$, where $\mathbf{F}(x, y, z)=(y, z, x)$ and γ is the intersection of $x^{2}+y^{2}=2 x$ with $x=z$.

Solution: i) $-2 \pi a^{2}$; ii) 0; iii) 0 .

Problem 6. A particle of mass m moves along the curve

$$
\mathbf{r}(t)=\left(t^{2}, \sin t, \cos t\right), t \in[0,1] .
$$

Assuming Newton's second law $\mathbf{F}(t)=m \mathbf{r}^{\prime \prime}(t)$, compute the force that acts on the particle. Compute also the total work done by this force field.

Solution: $\mathbf{F}(t)=m(2,-\sin t,-\cos t)$ and the work done by the force field along the curve is $2 m$.

Problem 7. Find the value of $b>0$ that minimises the work done by the force field $\mathbf{F}(x, y)=\left(3 y^{2}+2,16 x\right)$ for moving a particle from $(-1,0)$ to $(1,0)$ along the semi-ellipse $b^{2} x^{2}+y^{2}=b^{2}, y \geq 0$.

Solution: The minimal work done is $8(2-\pi) / 3$, for $b=4 / 3$.

Problem 8. Consider the force field $\mathbf{F}(x, y)=\left(c x y, x^{6} y^{2}\right), a, b, c>0$. Compute the value of a as a function of c in order that the work done by this force field in moving a particle along the parabola $y=a x^{b}$ from $x=0$ to $x=1$ does not depend on b.

Solution: $a=\sqrt{3 c / 2}$.

Problem 9. Compute the work done by the force field $\mathbf{F}(r, \theta)=(-4 \sin \theta, 4 \sin \theta)$ (given in polar coordinates) while moving a particle along the curve $r=e^{-\theta}$ from $(1,0)$ to the origin.

Solution: 8/5.

