Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 4.1 Path Integrals

Problem 1. Compute the following path integrals:

- i) $f(x,y) = 2xy^2$ along the circle of radius R in the first quadrant.
- ii) $f(x, y, z) = (x^2 + y^2 + z^2)^2$ along the helix $\mathbf{r}(t) = (\cos t, \sin t, 3t)$, from the point (1, 0, 0) to the point $(1, 0, 6\pi)$.

Solution: i) $2R^4/3$; ii) $2\pi\sqrt{10}(5+120\pi^2+1296\pi^4)/5$.

Problem 2. Compute the path integrals of the vector field F along the given paths:

i) $\mathbf{F}(x,y) = (x^2 - 2xy, y^2 - 2xy)$, along the parabola $y = x^2$ from (-1, 1) to (1, 1),

- ii) $\mathbf{F}(x,y) = (x^2 + y^2, x^2 y^2)$, along the curve y = 1 |1 x|, from (0,0) to (2,0),
- iii) $F(x, y, z) = (y^2 z^2, 2yz, -x^2)$, along the path given by $r(t) = (t, t^2, t^3)$, for $t \in [0, 1]$,
- iv) $F(x, y, z) = (2xy, x^2 + z, y)$, along the line that connects (1, 0, 2) with (3, 4, 1).

Solution: i) -14/15; ii) 4/3; iii) 1/35; iv) 40.

Problem 3. Consider the vector function $\mathbf{F}(x, y) = (x^2, y)$. Compute the path integral of \mathbf{F} along the following paths that start at (1, 0) and end at (-1, 0):

- i) The line segment connecting both points.
- ii) The two possible paths of the rectangle $[-1, 1] \times [-1, 1]$.
- iii) The upper semi-circle that connects both points.

Solution: -2/3 in all cases.

Problem 4. Compute:

- i) $\int_{a} (x-y)dx + (x+y)dy$, where g is the line connecting (1,0) with (0,2).
- ii) $\int_C x^3 dy y^3 dx$, where C is the unit circle.
- iii) $\int_{\Gamma} \frac{dx + dy}{|x| + |y|}$, where Γ is the square of vertices (1, 0), (0, 1), (-1, 0) and (0, -1), walked on once in a counterclockwise direction.
- iv) $\int_{\rho} (x+2y)dx + (3x-y)dy$ where ρ is the ellipse defined by $x^2 + 4y^2 = 4$, walked on once in a counterclockwise direction.

v) $\int_{R} \frac{y^3 dx - xy^2 dy}{x^5}$, where R is the curve $x = \sqrt{1 - t^2}$, $y = t\sqrt{1 - t^2}$, $-1 \le t \le 1$.

Solution: *i*) 7/2; *ii*) $3\pi/2$; *iii*) 0; *iv*) 2π ; *v*) $-\pi/2$.

Problem 5. Compute:

- i) $\int_{\gamma} y \, dx x \, dy + z \, dz$, where γ is the curve resulting from the intersection of the cylinder $x^2 + y^2 = a^2$ and the plane z - y = a and oriented counterclockwise.
- ii) $\int_{\gamma} \mathbf{F}$, where $\mathbf{F}(x, y, z) = (2xy + z^2, x^2, 2xz)$ and γ is the curve resulting from the intersection of the plane x = y and the sphere $x^2 + y^2 + z^2 = a^2$, oriented positively.
- iii) $\int_{\gamma} \mathbf{F}$, where $\mathbf{F}(x, y, z) = (y, z, x)$ and γ is the intersection of $x^2 + y^2 = 2x$ with x = z.

Solution: *i*) $-2\pi a^2$; *ii*) 0; *iii*) 0.

Problem 6. A particle of mass m moves along the curve

 $\mathbf{r}(t) = (t^2, \sin t, \cos t), t \in [0, 1].$

Assuming Newton's second law $\mathbf{F}(t) = m\mathbf{r}''(t)$, compute the force that acts on the particle. Compute also the total work done by this force field.

Solution: $F(t) = m(2, -\sin t, -\cos t)$ and the work done by the force field along the curve is 2m.

Problem 7. Find the value of b > 0 that minimises the work done by the force field $\mathbf{F}(x, y) = (3y^2+2, 16x)$ for moving a particle from (-1, 0) to (1, 0) along the semi-ellipse $b^2x^2 + y^2 = b^2$, $y \ge 0$.

Solution: The minimal work done is $8(2 - \pi)/3$, for b = 4/3.

Problem 8. Consider the force field $\mathbf{F}(x, y) = (cxy, x^6y^2)$, a, b, c > 0. Compute the value of a as a function of c in order that the work done by this force field in moving a particle along the parabola $y = ax^b$ from x = 0 to x = 1 does not depend on b.

Solution: $a = \sqrt{3c/2}$.

Problem 9. Compute the work done by the force field $\mathbf{F}(r,\theta) = (-4\sin\theta, 4\sin\theta)$ (given in polar coordinates) while moving a particle along the curve $r = e^{-\theta}$ from (1,0) to the origin.

Solution: 8/5.